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Abstract

The magnetohydrodynamic free convection from a sphere embedded in an electrically-conducting fluid-saturated porous regime with heat
generation is examined theoretically and numerically in this paper. A viscous flow model is presented using boundary-layer theory comprising the
momentum and heat conservation equations. These coupled non-linear partial differential equations are transformed using appropriate variables to
render the problem dimensionless. In the limit of infinite permeability (i.e. infinite Darcy number), the model is shown to reduce to that considered
in an earlier study by Molla et al. (2005). Numerical solutions for the non-similar equations are obtained using the Network Simulation Method
(NSM). Computations are compared with the earlier studies by Huang and Chen (1987), Molla et al. (2005) and Nazar et al. (2007) and found to be
in excellent agreement. Specifically we investigate here in detail the influence of Darcy number (Da), Forchheimer number (Fs), hydromagnetic
number (Nm), heat generation parameter (Q) and Grashof number (Gr) on the temperature and velocity fields and derivative functions. An
increase in Darcy number accelerates the flow (i.e. increases velocity) but reduces temperature in the fluid. Increasing magnetic field (Nm) causes
a reduction in velocity but enhances temperature. With heat generation (H > 0), i.e. a heat source, velocity and temperature are increased with
the converse behaviour computed for heat absorption, i.e. heat sink (H < 0). An increase in inertial porous drag parameter, Fs, causes a decrease
in velocity and also surface shear stress. Increasing free convection parameter, Gr, decreases velocity and also surface temperature gradient. The
present model finds applications in energy systems and magnetic materials processing.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Heat transfer in electrically-conducting fluids in the pres-
ence of magnetic fields has been an area of strong research
for many decades. Historically interest sprang in this area fol-
lowing developments in high-speed aerodynamics involving the
flight of aircraft in magnetospheric zones where the air becomes
electrically-conducting [1]. Early studies considered simple ge-
ometric configurations such as flat plates which were used as
an approximation for thin airfoils. A seminal study was pre-
sented by Rossow [2] who considered the magnetohydrody-
namic (MHD) heat transfer problem for the case of an insu-
lated plate, showing that neither flow separation nor reverse
flow were produced by a transverse magnetic field. Applica-
tions also arise in the sidewalls of large volume MHD energy
generators and accelerator devices. Singer [3] reported on the
forced and free convection magneto-heat transfer in a vertical
channel, showing that magnetic field strongly counters free con-
vection. Keiffer [4] considered the effects of variable electrical
conductivity in Hartmann flow and heat transfer in a channel,
motivated by the presence of large temperature gradients. Many
studies have appeared subsequently examining a wide range
of geometries including wedges, ellipses, cones, and spheres.
More recent studies have used numerical finite difference tech-
niques to solve the two-dimensional flow problem. For exam-
ple, recently Bég et al. [5] studied the combined influence of
buoyancy and impulsive motion on magneto-convection from
a rotating sphere using the Blottner finite difference method,
showing that dimensionless surface heat transfer increases with
a rise in magnetic field parameter. Heat generation effects on
MHD convection from a stationary sphere were reported by
Molla et al. [6] using the Keller box difference method who
showed that a rise in heat generation boosts the local skin fric-
tion coefficient but depresses the local rate of heat transfer.
Magnetic field was also shown to reduce velocities but enhance
temperatures. Kumari et al. [7] studied numerically the hydro-
magnetic compressible stagnation point flow from a sphere.
Molla et al. [8] presented boundary-layer solutions for magne-
tohydrodynamic free convection from a sphere with heat gen-
eration effects. Alam et al. [9] studied viscous heating effects
on hydromagnetic free convection from a sphere. Chamkha and
Al-Mudhaf [10] discussed the effect of thermal radiation flux
on combined heat and mass transfer in magnetohydrodynamic
convection with surface transpiration. Unsteady hydromagnetic
convection from a sphere has been extensively analyzed by
Takhar and Nath [11] for stagnation-point flow and for a si-
multaneously translating sphere with free convection effects
by Takhar et al [12], respectively. These studies however were
confined to purely fluid regimes. Porous media however arise
frequently in numerous geophysical and also industrial pro-
cesses. For low velocity scenarios, the Darcy model is generally
used. At higher velocities in high-porosity regimes, the Darcy–
Forchheimer drag force model is required. Magnetohydrody-
namic convection from spheres and other bodies embedded in
porous media has immediate applications in magnetic materials
processing and energy systems. Several excellent articles have
been communicated discussing hydromagnetic convection in
electrically-conducting fluid-saturated porous media. Yih [13]
presented numerical finite difference solutions for the influence
of viscous dissipation, Joule heating and heat source/sink on
non-Darcy MHD natural convection flow over an isoflux per-
meable sphere in a porous medium for air. Damseh [14] studied
magnetohydrodynamic mixed convection flow from a vertical
surface embedded in a porous media with thermal radiation ef-
fects for both buoyancy-aiding and buoyancy-opposing flow.
Al-Zubi and Duwairi [15] studied hydromagnetic convection
boundary layer flow over an ellipse in a Darcian porous regime.
Afify [16] numerical analyzed the viscosity and thermal dis-
persion effects on magnetohydrodynamic natural convection
heat and mass transfer from a vertical isothermal surface to
saturated non-Darcian porous media with Soret and Dufour
effects. Thermophoretic and thermal radiation effects on hydro-
magnetic free convection in a porous medium were studied by
Rashad [17]. El-Kabeir et al. [18] used the Lie group method to
study unsteady, three-dimensional laminar hydromagnetic heat
transfer from an inclined permeable plate with heat genera-
tion/absorption in a porous medium. Mahdy et al. [19] have
discussed the magnetohydrodynamic free convection from a
wavy cone to a porous medium at high Darcy–Rayleigh num-
bers. In the present problem we examine the composite effects
of magnetic field, buoyancy, heat generation and also Darcian
and Forchheimer drag forces on the boundary layer convection
from an isothermal sphere embedded in a porous regime. To
the authors’ knowledge, such a study requires further analysis
which is of interest to the heat transfer community.

2. Mathematical flow model

Let us consider the steady laminar boundary layer heat
transfer in an incompressible, viscous, electrically-conducting
fluid on a spherical body immersed in a fluid-saturated porous
medium. The ambient fluid temperature is T∞. A constant
transverse magnetic field with strength, Bo, is applied along the
coordinate, Y , as indicated in Fig. 1. The surface temperature of
the sphere is maintained at Tw , a value in excess of T∞. It is as-
sumed that the magnetic Reynolds number Rm = μoaWL � 1,
where μo is the magnetic permeability, a is the radius of the
sphere, L and W are the characteristic length and velocity, re-
spectively. Under these conditions it is possible to neglect the
effect of the induced magnetic field as compared with the ap-
plied magnetic field. Viscous and Joule heating effects are also
neglected. The X-coordinate is directed along the sphere sur-
face from the stagnation point and the Y -coordinate defines dis-
tance normal to the sphere surface. The fluid possesses constant
thermophysical properties with the exception of those caused
by density changes which generate the buoyancy force, un-
der the Boussinesq approximation. It is also assumed that the
effect of the buoyancy-induced streamwise pressure gradient
terms on the flow and temperature fields is negligible. Under
these assumptions, the boundary layer equations, based on the
conservation of mass, momentum and energy can be shown to
reduce to:

∂(RU) + ∂(RV ) = 0 (1)

∂X ∂Y
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Fig. 1. Geometry of physical regime.
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The corresponding wall and free stream boundary conditions
are, respectively:

At Y = 0: U = 0, V = 0, T = Tw (4a)

As Y → ∞: U → 0, T → T∞ (4b)

where U , V are the velocity components in the X, Y direc-
tions respectively, σ is the electrical conductivity of the fluid,
T is the temperature, ρ is the fluid density, μ is the dynamic vis-
cosity, g denotes gravitational acceleration, R(X) = a sin(X/a)

denotes the radial distance from the symmetrical axis to the
sphere surface, K is the permeability of the porous medium,
b is the Forchheimer drag coefficient, β is the coefficient of
thermal expansion, cp is the specific heat at constant volume,
Qo(T − T∞) is the quantity of heat generation/absorption per
unit volume, Qo is a constant. The subscripts w and ∞ denote
conditions on the surface of the sphere and in the free stream,
respectively. Proceeding with the analysis we now introduce the
following variables, following Molla et al. [6]:

x =
(

X

a

)
, y = Y

a
Gr1/4, u = a

ν Gr1/2
U

v = a

ν Gr1/4
V, θ = T − T∞

Tw − T∞

Gr = gβ(Tw − T∞)a3

ν2
, Da = K

a2

Fs = b

a
, r(x) = a sinx (5)

where x, y are dimensionless coordinates along and normal to
the tangent of the sphere surface, u,v are the dimensionless
velocities in the x, y directions, Gr is the Grashof number, θ

is dimensionless temperature, Da is the Darcy number, Fs is
the Forchheimer number, ν is kinematic viscosity. We note that
since the porous medium is homogenous and isotropic, only a
single permeability, K , is required to simulate it. Also the heat
source/sink term, Qo is greater than zero for heat generation
and less than zero for heat absorption. Implementation of the
variables (5) in the boundary-layer equations (1) to (3) leads to
the following dimensionless partial differential equations:

Mass conservation:

∂(ru)

∂x
+ ∂(rv)

∂y
= 0 (6)

Momentum conservation:(
u
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Energy (heat) conservation:(
u
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= 1
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(
∂2θ

∂y2

)
+ Qo
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where Pr is the Prandtl number. The corresponding dimension-
less boundary conditions now take the form:

At y = 0: u = v = 0; θ = 1 (9a)

As y → ∞: u → 0, θ → 0 (9b)

We further define a stream function as follows:

ψ(x, y) = xr(x)f (x, y) (10)

and define using the Cauchy–Riemann equations:

u = 1

r

∂ψ

∂y
(11a)

v = −1

r

∂ψ
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(11b)

The dimensionless equations (6) to (8) now become:

(
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f
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where Nm = σB2
o a2

μGr1/2 is the hydromagnetic parameter and H =
a2Qo

cpμGr1/2 is the heat source/sink parameter. The transformed

boundary conditions finally take the form:

At y = 0: f = ∂f

∂y
= 0; θ = 1 (14a)

As y → ∞:
∂f → 0, θ → 0 (14b)

∂y
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The two-point boundary value problem defined by Eqs. (12),
(13) subject to the surface and free stream conditions (14a) and
(14b) is well-posed and can be solved by a variety of numeri-
cal methods. Analytical solutions are intractable however. We
elect to use the Network Simulation Method (NSM) which is
discussed in due course. The flow regime is controlled by six
thermophysical parameters, namely Nm, Da, Gr, Fs, Pr and
H . In order to provide comparisons with simplifications of the
present model we shall discuss now certain special cases of the
general flow model.

Case I. Lower stagnation point MHD Heat transfer with
heat generation or absorption in a Darcian porous medium.
Following Molla et al. [6], we observe that for x ∼ 0, in the
vicinity of the lower stagnation point on the sphere, the mo-
mentum and energy equations can be simplified to the following
coupled ordinary differential equations:
(

d3f

dy3

)
+ 2f

d2f

dy2
−

[
df

dy

]2

+ θ

− Nm
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]
= 0 (15)

1
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)
+ 2f

dθ

dy
+ Hθ = 0 (16)

Case II. Heat transfer without magnetic field or heat gen-
eration/absorption effects in a purely fluid medium. With
Nm = 0 (electrically non-conducting), H = 0 (no heat source
or sink), Da → ∞ (i.e. when porous fibers vanish in the limit),
Eqs. (12) and (13) become:
(
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1
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]
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This case has been studied by Molla et al. [6] and the same
equations can also be extracted from the micropolar convection
study by Nazar et al. [20] and the Newtonian study by Huang
and Chen [21]. Further of interest in engineering design we de-
fine a local Nusselt number as follows:

Nux = −∂θ(x,0)

∂y
(19)

This allows an estimate to be made of the rate of heat transfer
at the surface of the sphere.

3. Numerical solution by Network Simulation Method
(NSM)

The governing equations (12) and (13) under boundary con-
ditions (14a) and (14b) amount to a fifth order set of non-
linear, coupled partial differential equations with five corre-
sponding boundary conditions. The NSM has been applied
successfully to an extensive range of linear and non-linear
transport problems [22–28]. In the NSM technique, discretiza-
tion of the differential equations is founded on the finite-
difference formulation, where discretization of the spatial co-
ordinates is necessary. It is assumed that the electrical vari-
able of voltage is equivalent to the velocities (U,V ) and
temperature (T ), while the current is equivalent to the ve-
locity flux (∂U/∂X,∂U/∂Y, ∂V/∂Y ) and temperature flux
(∂T /∂X,∂T /∂Y ). A network electrical model for each vol-
ume element is designed so that its electrical equations are
formally equivalent to the spatial discretized equation. The en-
tire network model, including the devices associated with the
boundary conditions, is solved by the numerical computer code
Pspice [29]. This code is imposed and adjusted continuously
automatically for the time-step to reach a convergent solution
in each iteration, according to the given stability and conver-
gence requirements. Eqs. (12) and (13) may be further written
as:

For x ∼ 0:(
d2h

dy2

)
+ 2f

dh

dy
− h2 + θ − Nmh − Gr1/2

Da
h = 0 (20)

1

Pr

(
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)
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df
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The NSM technique begins with the design of the network
model of the element cell, following which we incorporate the
boundary conditions. The following currents are defined:

Jh,y = ∂h

∂y
(25a)

Jh,x = ∂h

∂x
(25b)

Jθ,y = ∂θ

∂y
(25c)

Jθ,x = ∂θ

∂x
(25d)

Jf,x = ∂f

∂x
(25e)

With these definitions of the currents, Eqs. (23) and (24) can be
cast as follows:
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Table 1
Nux computations for non-magnetic convection from a sphere without heat generation for Pr = 0.7,7.0

x (de-
grees)

Pr = 0.7 Pr = 7.0

Ref. [6] Ref. [20] Ref. [21] NSM Ref. [6] Ref. [20] Ref. [21] NSM

0 0.4576 0.4576 0.4574 0.4577 0.9582 0.9595 0.9581 0.9591
10 0.4564 0.4565 0.4563 0.4564 0.9558 0.9572 0.9559 0.9569
20 0.4532 0.4533 0.4532 0.4534 0.9492 0.9506 0.9496 0.9499
30 0.4479 0.4480 0.4480 0.4481 0.9383 0.9397 0.9389 0.9392
40 0.4404 0.4405 0.4407 0.4409 0.9231 0.9239 0.9239 0.9243
50 0.4307 0.4308 0.4312 0.4313 0.9034 0.9045 0.9045 0.9047
60 0.4188 0.4189 0.4194 0.4192 0.8791 0.8801 0.8805 0.8803
70 0.4045 0.4046 0.4053 0.4051 0.8501 0.8510 0.8518 0.8515
80 0.3877 0.3879 0.3886 0.3885 0.8161 0.8168 0.8182 0.8178
90 0.3863 0.3684 0.3694 0.3692 0.7768 0.7774 0.7792 0.7785
∂Jh,y

∂y
+

(
1 + x

tanx

)
f Jh,y − h2 + θ

x
sin(x)

− Nmh − Gr1/2

Da
h − Fs Gr

Da
xh2

= x[hJh,x − Jf,xJh,y] (26)

∂Jθ,y

∂y
+ Pr

(
1 + x

tanx

)
f Jθ,y + Pr Hθ

= xPr[hJθ,x − Jf,xJθ,y] (27)

These partial differential equations can be transformed into a
system of connected differential equations, by means of the spa-
tial discretization, where the following currents (28a)–(28d) are
implemented by means of resistors of value “	Y ” and others
currents are implemented with the voltage control current gen-
erator.

Jh,i,j−	Y = (hi,j−	Y − hi,j )/	Y (28a)

Jh,i,j+	Y = (hi,j − hi,j+	Y )/	Y (28b)

Jθ,i,j−	Y = (θi,j−	Y − θi,j )/	Y (28c)

Jθ,i,j+	Y = (θi,j − θi,j+	Y )/	Y (28d)

A first-order central difference approximation is used for the
first derivate (Eqs. (25a) and (25c)), a first-order non-central
difference approximation is used in Eqs. (25b), (25d), and (25e)
and finally a second-order central difference approximation is
used for the second derivate (Eqs. (28a)–(28d)).

Jh,y = ∂h

∂y
≈ hi,j+	y − hi,j−	y

2	y
(29a)

Jθ,y = ∂θ

∂y
≈ θi,j+	y − θi,j−	y

2	y
(29b)

Jh,x = ∂h

∂x
≈ hi,j+	y − hi,j

	x
(29c)

Jθ,x = ∂θ

∂x
≈ θi,j+	y − θi,j

	x
(29d)

Jf,x = ∂f

∂x
≈ fi,j+	y − fi,j

	x
(29e)

∂Jh,y

∂y
≈ Jh,i,j−	y − Jh,i,j+	y

	y

= hi,j−	y + hi,j+	y − 2hi,j

2
(29f)
	y
∂Jθ,y

∂y
≈ Jθ,i,j−	y − Jθ,i,j+	y

	y

= θi,j−	y + θi,j+	y − 2θi,j

	y2
(29g)

In Eqs. (26) and (27) all the terms can be treated as a current.
Therefore implementing Kirchhoff’s law for electrical currents
from circuit theory, the network model is obtained. To intro-
duce the boundary conditions, voltage sources are employed to
simulate constant values of velocity and temperature. Similarly,
Eqs. (20) and (21) can be modeled by means of the NSM and
it is possible to obtain the numerical solutions to x = 0. These
are subsequently input as boundary conditions for a solution for
x > 0, which is two-dimensional.

4. Results and discussion

To test the validity of the present numerical solutions we
have compared the NSM computations with selected results
in Molla [6], Nazar et al. [20] and Huang and Chen [21]. Ta-
ble 1 provides the solutions for Nux , i.e. local Nusselt number
(= −∂θ(x,0)/∂y) obtained in [6,20] and [21] along with the
present NSM results, for the cases of air, i.e. Pr = 0.7 and
water for which Pr = 7.0. In the case of Ref. [20] the mi-
cropolar flow equations can be shown to reduce to (17) and
(18) for the Newtonian case. In the case of Ref. [21] when
transpiration (i.e. suction or blowing) effects are neglected, the
resulting equations are identical to (17) and (18) and the data
in Table 1 is for the prescribed surface temperature case con-
sidered by Huang and Chen [21]. Table 2 provides solutions for
the dimensionless shear stress function ∂2f (x,0)/∂y2 obtained
by Huang and Chen [21] for the prescribed surface tempera-
ture case, for Pr = 0.7 (air) and Pr = 7.0. These computations
were obtained with the Keller-box finite difference method. In
the NSM computations shown in Figs. 2 to 12, default val-
ues for the governing dimensionless numbers are as follows:
Nm = 1, Da = 0.1, Gr = 1, Fs = 1, Pr = 0.7 and H = 0,
unless otherwise indicated. As such the figures correspond to
hydromagnetic thermal convection in electrically conducting
air-saturated non-Darcian porous media, without heat sources.
Excellent agreement of the present NSM computations, with
the earlier solutions of Molla et al. [6] in the absence of porous
body forces (Da → ∞ and Fs = 0), with Nazar et al. [20]
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Table 2

Dimensionless shear stress (
∂2f (x,0)

∂y2 ) computations for electrically non-

conducting convection from a sphere without heat generation for Pr = 0.7,7.0

x (degrees) Ref. [21] NSM Ref. [21] NSM
Pr = 0.7 Pr = 0.7 Pr = 7.0 Pr = 7.0

0 0.7678 0.7680 0.5034 0.5026
10 0.7655 0.7658 0.5019 0.5023
20 0.7586 0.7590 0.4975 0.4982
30 0.7471 0.7473 0.4901 0.4900
40 0.7311 0.7310 0.4800 0.4811
50 0.7108 0.7111 0.4670 0.4682
60 0.6863 0.6868 0.4514 0.4518
70 0.6577 0.6583 0.4332 0.4336
80 0.6253 0.6261 0.4127 0.4134
90 0.5892 0.5898 0.3898 0.3907

neglecting micropolar effects and with Huang and Chen [21]
neglecting transpiration effects, is achieved in Table 1, up to
three decimal places. In Table 2, the NSM computations are
again found to show excellent agreement with selected solu-
tions by Huang and Chen [21], for the dimensionless shear
stress for electrically non-conducting purely fluid convection
from a sphere without heat generation (Da → ∞, Fs = 0,
Nm = 0, H = 0) for Pr = 0.7 (air), 7.0 (water). In Table 1 we
observe that local Nusselt number, Nux , decreases steadily with
an increase in x. Therefore as we progress from the lower stag-
nation point on the sphere (x ∼ 0) through increments of 10
degrees, up to x = 90 degrees, for the case of air (Pr = 0.7)
Nux falls from 0.7680 to 0.5898. Similarly a decrease in Nux

also occurs for the case of water (Pr = 7.0), i.e. the Nux values
decreases from 0.5026 for x = 0 degrees to 0.3907 for x = 90
degrees. With an increase in Prandtl number there is therefore
marked reduction in Nux values, i.e. heat transfer rates at the
sphere surface are decreased. In Table 2 shear stress function,
∂2f (x,0)/∂y2, is also observed to decrease continuously, for
both Pr = 0.7 and Pr = 7.0, as x increases, i.e. as we progress
from the lower stagnation point around the sphere to the outer-
most point on the sphere surface (at x = 90 degrees). However
values corresponding to Pr = 0.7 are significantly larger than
for Pr = 7.0. Shear stress function for Pr = 0.7 falls from
0.7680 at x = 0, to 0.5898 for x = 90 degrees (π/2 radians)
and for Pr = 7.0, shear stress function decreases from 0.5026
at x = 0 degrees to 0.3907 at x = 90 degrees (π/2 radians).
Clearly therefore for either Pr = 0.7 and Pr = 7.0, the max-
imum surface heat transfer and surface shear stress function
occurs always at the lower stagnation point on the sphere.

In Figs. 2 and 3 the influence of Darcy number, Da on the
velocity, [∂f/∂y], and temperature function, θ , profiles versus
transverse coordinate (normal to the sphere surface) is shown,
both for the case of non-Darcian MHD convection with heat
generation. As Da is increased from 0.01 (low permeability)
through 0.05, 0.1 and 1.0 (very high permeability) a marked
increase in velocity occurs. The Darcian impedance term in
−Gr1/2/Da[∂f/∂y] in the momentum equation (12) is clearly
inversely proportional to Da, for constant Gr. With less fibers
to resist the flow, i.e. with greater permeability (corresponding
to an increase in Darcy number) there will be a reduction in
the Darcian drag acting on the flow regime which will serve to
Fig. 2. Velocity variation for various Darcy numbers (Da).

Fig. 3. Temperature variation for various Darcy numbers (Da).

progressively accelerate the flow, consistent with the trend for
increasing velocity in Fig. 2. The implication of this in prac-
tical systems is that more permeable materials which contain
less solid fibers will provide a decreased inhibition to flow.
Maximum velocities are located near to the sphere surface in
the boundary-layer regime, and these decay to zero in the free
stream. Conversely with an increase in Da, the temperature in
the flow domain, θ , is seen to decrease substantially. With larger
permeabilities less solid material is present in the regime for
thermal conduction heat transfer and this acts to decrease tem-
peratures in the saturated regime. Maximum temperature is al-
ways located at the sphere surface (y = 0) and decays smoothly
to zero as we approach the free stream. As such the presence of
a porous medium serves as a strong control mechanism in in-
dustrial operations where the flow can be regulated and also
temperatures reduced.

In Figs. 4 and 5 the effects of hydromagnetic parameter,
Nm, on the velocity and temperature distributions through the
boundary layer are illustrated. The case of Nm = 0 implies
electrically non-conducting flow. For Nm = 1 the hydromag-
netic drag force (Lorentz body force) is of the same order of
magnitude as the viscous hydrodynamic force in the boundary
layer. An increase in Nm corresponds therefore to an increase
in the magnitude of magnetic field applied in the y direction
(normal to the sphere surface) and serves to decrease veloc-
ity in the regime, owing to the increase in hydromagnetic drag.
In consistency with the classical investigations of Gardner et
al. [30] and Bush [31], a velocity overshoot is observed. Ve-
locity is therefore seen to peak in the vicinity of the sphere
surface and then decrease rapidly to zero in the free stream.
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Fig. 4. Velocity variation for various hydromagnetic parameters (Nm).

Fig. 5. Temperature variation for various hydromagnetic parameters (Nm).

Fig. 6. Velocity variation for various heat source/sink parameters (H).

The maximum velocity clearly corresponds to the electrically
non-conducting case (Nm = 0). Conversely we observe that an
increase in Nm causes a marked rise in the temperature, θ , in the
fluid. With increasing magnetic field, more energy is dissipated
in the fluid and this manifests as an increase in thermal energy
which serves to boost temperatures. The greatest difference in
θ profiles occurs some distance from the sphere. In consistency
with the boundary conditions specified in (14a) and (14b) max-
imum temperature always arises at the wall and then decreases
smoothly to zero in the free stream (far away from the sphere
surface).

In Figs. 6 and 7 we have presented the influence of the
heat source/sink parameter, H , on the velocity and temperature
profiles in the boundary-layer regime. The presence of a heat
source (H > 0), i.e. heat generation, creates a hot layer adja-
cent to the surface of the sphere which decreases the heat trans-
Fig. 7. Temperature variation for various heat source/sink parameters (H).

Fig. 8. Temperature variation for various Forchheimer numbers (Fs).

fer rate from the surface. Conversely with a heat sink present
(H < 0), i.e. heat absorption, a cold layer of fluid is gener-
ated adjacent to the sphere surface which serves to increase
heat transfer rates from the surface. Velocity, [∂f/∂y], is seen to
increase substantially with heat source (H = 0.1,0.5) and de-
crease with heat sink (H = −0.1,−0.5). The maximum veloc-
ity corresponds to the maximum heat source case, H = 0.5, and
occurs at y ∼ 2, i.e. relatively close to the sphere surface. All
velocity profiles decay to zero in the free stream. The temper-
ature in the fluid-saturated porous regime, θ , clearly increases
with heat generation present as thermal energy is added to the
flow regime for H = 0.1,0.5. Conversely temperatures are de-
creased for H = −0.1,−0.5, i.e. with heat absorption present.
The case with no heat generation/absorption (H = 0) clearly
falls between H = 0.1 and H = −0.1. All temperature profiles
decrease to zero gradually as we approach the exterior of the
boundary-layer regime.

In Fig. 8 the influence of the Forchheimer (second order)
porous drag parameter, Fs, on temperature profiles with dis-
tance normal to the sphere surface is shown. The Forchheimer
drag is an inertial term which appears as −Fs Gr/Dax[∂f/∂y]2

in the momentum conservation equation (12). As such increas-
ing Fs will increase the Forchheimer drag in the porous medium
which will serve to decelerate the flow, i.e. reduce velocities
(not shown), and will increase the temperature throughout the
boundary layer adjacent to the sphere surface. Peak temperature
therefore is associated with the maximum value of Fs, i.e. 50.
All profiles decay continuously from a maximum at the sphere
surface (y = 0) to zero far way from the surface.
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Fig. 9. Velocity variation for various Grashof numbers (Gr).

Fig. 10. Temperature variation for various Grashof numbers (Gr).

The influence of the free convection parameter, Grashof
number (Gr) on velocity and temperature distributions with y

coordinate is depicted in Figs. 9 and 10. Increasing Gr corre-
sponds to an increase in thermal buoyancy force in the regime.
As such the flow is decelerated which causes the velocity to
plummet considerably. Peak velocities (as shown in Fig. 9) cor-
respond to y ∼ 1 (close to the sphere surface), and fall from
0.068 for Gr = 1.0 to 0.012 for Gr = 50. There is a sharp rise in
velocity near the sphere surface after which velocities peak and
then decrease continuously to zero far from the surface. Con-
versely with an increase in free convection parameter, as seen
in Fig. 10, since positive Grashof number implies cooling of
the sphere surface by convection currents (i.e. thermal energy
transfer to the fluid), there is a substantial increase in temper-
ature in the fluid-saturated porous regime. For Gr < 0 there is
heating of the sphere surface by free convection currents which
would induce cooling of the fluid in the regime, as described by
Naroua et al. in [32], although this case has not been shown in
the figures, for brevity.

The effects of Fs and Gr on the surface shear stress
function, ∂2f (x,0)/∂y2 and surface temperature gradient,
−∂θ(x,0)/∂y, i.e. negative local Nusselt number function, re-
spectively, with coordinate along the surface, x, are shown in
Figs. 11 and 12. The porous medium inertia effects constitute
a strong resistance to flow. Increasing Fs, boosts the Forch-
heimer inertial drag which slows down flow in the medium.
Therefore shear stress function is seen to be reduced consider-
ably as Fs increases from 0.5 (weak inertial drag), through 1.0,
20, to 50 (very strong inertial drag). All profiles descend from a
Fig. 11. Surface shear stress function variation for various Forchheimer num-
bers (Fs).

Fig. 12. Surface temperature gradient variation with Grashof number (Gr).

maximum at the lower stagnation point (x = 0) to a minimum
at x = 1.5. Increasing Gr values imply cooling of the sphere
surface by free convection currents which serves to decelerate
the flow and the surface temperature gradient, ∂θ(x,0)/∂y is
clearly decreased. Peak values are reduced at the lower stagna-
tion point (x = 0) from 0.205 for Gr = 1.0, to approximately
0.1 for Gr = 50.

5. Conclusions

A mathematical model has been developed for the isother-
mal hydromagnetic convection from a sphere embedded in a
fluid-saturated non-Darcian porous medium in the presence
of heat generation or absorption. The transformed partial dif-
ferential equations for momentum and energy conservation
have been solved using the Network Simulation Methodology
(NSM) technique. Our computations have shown that an in-
crease in magnetic field parameter (Nm) decreases velocity
(∂f/∂y) and increases temperature (θ). An increase in Darcy
number (Da) serves to increase velocity and decrease tempera-
ture. An increase in Forchheimer number (Fs) reduces velocity
in the porous regime, increases temperature and reduces sur-
face shear stress. With increasing heat generation parameter
(H > 0) velocity in the porous regime is boosted as is tem-
perature. The reverse effects are achieved with a heat sink (i.e.
absorption). Increasing Grashof number (Gr) induces a de-
crease in velocity and surface temperature gradient (local Nus-
selt number) but increases considerably the temperature in the
porous regime. The present model is aimed at elucidating fur-
ther the heat transfer aspects of the hydromagnetic convection



O.A. Bég et al. / International Journal of Thermal Sciences 48 (2009) 913–921 921
from a sphere in fluid-saturated non-Darcian porous media and
it is hoped that it will serve as a stimulus for future numerical
and also experimental studies of immediate interest in geo-
physical magneto-convection, materials processing and MHD
energy systems applications.
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